The ooc) AI I DA cheat sheet

The verdi command-line API*

create
. import
archive .
info
input|output)cat
® \ogi’[ooomputer
code create cleanworkdir
export
computer configure
setup core.array
, data /
verdi o) e @ core.dict
group \’ core.structure
(add|move|remove)-nodes
node graph

repo

la
process / piay
® ® report
\0 status

shell

*Not exhaustive
*Most options also implement show/1list/delete

The AiiDA Node subclasses
CalculationNode CalcFunctionNode
.<: CalcJobNode

WorkFunctionNode

ProcessNode

WorkflowNode

WorkChainNode
StructureData

List, Dict, Int, Float, EnumData
FolderData
RemoteData

Node**

InstalledCode

PortableCode
AbstractCod
stract.ode ContainerizedCode
ArrayData KpointsData
TrajectoryData

** Inheritance of all SinglefileData

® UpfData
| from N .\o
classes from Node CifData

ensures provenance and database storage

Additional web resources (click me)

aiidalab aiida-project aiida-shell aiida-resource-registry

alida-tutorials atida-submission-controller aiida-plugin-cutter

Tools of the trade

Quickstart:
$ verdi presto

Know what's there:

$ verdi profile list

$ verdi plugin list aiida.calculations
$ verdi plugin list aiida.workflows

AiiDA to classical file tree:
$ verdi process dump <pk>

Config options, e.g. caching:

$ verdi config list

$ verdi config set \
caching.default_enabled true

Fix what went astray:

$ verdi daemon stop

$ verdi process repair
$ verdi daemon start

Share/backup your data:

$ verdi archive create <archive.aiida> \
--groups/--nodes <groups/nodes>

$ verdi archive import <archive.aiida>

$ verdi storage backup <backup-path>

AiiDA Python imports

Import aiida-core Node classes from aiida.orm:
from aiida.orm import Dict, CalcJobNode

Load Nodes via pk, UUID, or label:
from aiida.orm import load_node
my_node = load_node(<identifier>)

Import Data classes via the DataFactory:
(Note: Prefix AiiDA core types with core)

my_kpts = DataFactory("core.array.kpoints")

Import CalcJob classes via the CalculationFactory:
my_calcjob = CalculationFactory(
"quantumespresso.pw"

)

Import WorkChain classes via the WorkflowFactory.
my_workflow = WorkflowFactory(
"quantumespresso.pw.bands"

)

MARVEL
OCo0®

NATIONAL CENTRE OF COMPETENCE IN RESEARCH

DRIVING
MAX THE EXASCALE
TRANSITION

https://www.aiidalab.net
https://github.com/aiidateam/aiida-project/
https://github.com/sphuber/aiida-shell
https://github.com/aiidateam/aiida-submission-controller
https://github.com/aiidateam/aiida-resource-registry
https://aiida-tutorials.readthedocs.io/en/latest/
https://github.com/aiidateam/aiida-plugin-cutter
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/provenance/concepts.html
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/processes/concepts.html
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/calculations/index.html
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/workflows/index.html
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/workflows/usage.html#work-chains
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/workflows/usage.html#work-functions
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/calculations/usage.html#calculation-jobs
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/calculations/usage.html#calculation-functions
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#core-data-types
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#structuredata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#abstractcode
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#folderdata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#remotedata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#portablecode
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#containerizedcode
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/apidoc/aiida.orm.nodes.data.html#aiida.orm.nodes.data.cif.CifData
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#upfdata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#trajectorydata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#kpointsdata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#arraydata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#installedcode
https://aiida.readthedocs.io/projects/aiida-core/en/latest/topics/data_types.html#singlefiledata
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-computer
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-data
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-process
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-node
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-shell
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-group
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-code
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-calcjob
https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/command_line.html#verdi-archive

The 65 AIIDA cheat sheet

Main attributes and methods™**

Node properties and operations CalcJobNode

label Short label inputs CalcJob inputs cell Lattice vectors

description Verbose description outputs CalcJob outputs get_cell() Get lattice vectors

pk Node ID inputs.code Executed Code set_cell(<c>) Set lattice vectors

uuid Unique ID computer Execution Computer get_cell_volume() Compute cell volume

ctime Creation time get_remote_\ Remote directory pbc Periodic bound. cond.

mtime Modification time workdir() along each axis

node_type Node type get_options() Calcdob options sites Atomic sites

store() Store node in db res Get ResultManager kinds Species with masses,
res.get_results() Results as dict symbols, ...

get_formula() Chemical formula

set_pymatgen(<p>) Create from pymatgen

attributes Get NodeAttributes spec WorkChain specification

attributes.all Attributes as dict spec.inputs Inputs convert(<fmt>) Convert to ASE,

attributes.get() Get specific attribute spec.outputs Outputs . pymatge.n,

attributes.set() Set specific attribute spec.outline Outline of steps get_cif() Cet as CifData

extras - Like the attributes| |spec.exit_code Exit codes append_aton(Add atom of type

repository Get NodeRepository ctx Context — Data sym?o}s=<symb>, <symb>”

links Get the NodeLinks container of WorkChain position=<p> at position <p>
to_context Add data to the context)

exit_status Process exit status set_kpoints(<k) Set explicit list of kpts

caller Parent process that called this process get_kpoints() Get explicit list of kpts

called Directly called child processes reciprocal_cell Get the reciprocal cell

is_<property> finished / finished_ok / failed / stored / ...

process_<property> class / label / state / status / type ™ Plus usual property getters/setters

get_builder_restart() Get a prepopulated builder for restarting — but, immutable once stored in db

The QueryBuilder

Fetch all nodes of group "tutorial" Materials Science example — Smearing energy for Ba0,Ti if smaller than 10 eV

gb = QueryBuilder()
Node qb.append(StructureData
project = "*" StructureData, filters = {'extras.formula':
'Ba03Ti"
filters={"extras.formula":"Ba03Ti"}, R Feznaz.icnmlaﬂ
project=["extras.formula"],

tag="structure" \
) with_incoming
qb.append(
filters = {"label": CalcJobNode
"tutorial"} ’ .
tag="calculation", CalcJobNode

with_incoming="structure"
) A
qb.append(with_incoming

Dict,

tag="results",

filters={"attributes.energy_smearing":

from aiida.orm import QueryBuilder

gb = QueryBuilder()
gb.append(Node,
tag="nodes",

. Dict
project="*") <=":-0.0001}}, Filterse{
) pro_‘;ect:['attributes.energy_smearing':
qb. append("attributes.energy_smearing", {'<=":-0.001}}
Group, "attributes.energy_smearing_units" project=[

s " " 'attributes.energy_smearing',
with_node="nodes",]’ . . . 'attributes.energy_smearing_units']
filters={"1label": "tutorial"} with_incoming="calculation"

))
gb.all() gb.all()

E PFL swissunjversities ééii.\ITERSECT

